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THE NON-LINEAR THEORY OF FREE ELECTRON LASERS AND

EFFICIENCY ENHANCEMENT

1. INTRODUCTION

Free electron lasers (FELs) tased on backscattering from relativistic electron beams have
demonstrated a unique potential for becoming a new type of coherent radiation source. In prin-
ciple, these radiaticn sources will be characterized by output wavelengths ranging from the mil-

limeter to beyond the optical regime, frequency tunability, very high power levels and high

efiiciencies.

Theoretical analysis on the FEL mechanism has been carried out in the single particle! '8
as well as the collective scattering regime.”!!:15.17-26 Also non-linear processes and saturation

efficiencies have been considered for various FEL scattering regimes.® 8- 15-17.18.23.24.27

The operative mechanism in FELs is a parametric process in which a long wavelength
pump field interacts with a beam of relativistic electrons. Under certain conditions the incident
pump field will decay into a longitudinal wave (density wave) and a backscattered electromag-
netic wave which is double doppler upshifted in frequency. The longitudinal wave (also re-
ferred to as density wave, beat wave or ponderomotive wave) results from the coupling of the
pump field and the electromagnetic field through the v x B/c force term. The ponderomotive

wave plays a central role in the linear and non-linear development of the scattering process. Its

Manuscript submitted July 19, 1979.
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SPRANGLE, TANG, AND MANHEIMER

effects on the electron beam is closely analogous to the role played by the negative energy

(slow space charge) wave in conventional traveling wave mechanisms.

The pump field may take the form of a static spatially periodic magnetic or electric field or
a propagating electromagnetic wave. in this paper we take the pump to be a static, periodic

right-handed, helically polarized, magnetic field. The frequency of the scattered radiation is

given by

o=+ v/c) y}v,Qn/) = dnxylc/,
where

v, = (1 = v},

v, is the axial beam velocity and /is the pump period. The possibility of using a two-stage FEL

scattering process, in order to reduce the electron energy required for very short output

wavelengths, "~ been suggested. !4 18

Roughlv speaking, FELs can be divided into two categories, depending on the gain of the
radiation field. In the low gain regime, the overall spatially integrated gain is due to wave in-
terference effects and is much less than unity. This is a single particle (collective effects are

not manifested through space charge fields) scatiering regime and is exemplified by experiments

at Stanford University.? 2

The high gain FELs are characterized by stimulated radiation fields which grow exponen-
tizlly in the linear regime. Experiments with intense relativistic electron heams performed at
NRL, Columbia University and Cornell University fall into this class.’*~** For a detailed

theoretical discussion of the various FEL mechanisms the reader is referred to Refs. (11), (17)

and (18).

_ e e e




-

NRL MEMORANDUM REPORT 4034

The main objectives of this work are to present a self-consistent nen-linear formulatign of
the FEL mechanism and to theoreticaily lmlm soms of the concepts necessary to devélop
efficient, high power, tunable FEL radiation sources. Some of the salient features of this theory
include: i) completely arbitrary magnetic pump field {period and amplitude can be functions of
axia! position) ii) space charge effects, iil) arbitrary polarization of the radiation fleld, iv) com-
pletely relativistic particle dynamics and v) frequency and spatial harmonics in the excited
fields. The non-linear formalism developed for the FEL problem is also applicable to a large
class of temporal steady state convective processes. Our formulation of the problem permits
the tpatial dependence of the pump magnetic field to be arbitrary. Hence, efficiency enhance-
ment schemes which utilize amplitude and wavelength spatial variations of the pump field can
be analyzed. Thc spatial variation of the scattered radiation amplitude and wavelength occurs
on a scale-length .which is large compared to the wavelength of the pump field. This permits
numerical solutions for cases where the electron beam energy is extremely high. That is, in
this approach, there is no large separation of spatial scalc lengths, despite the Jarge sptial scale
difference between the wavelength of the scattered field and the pump field, so arbitrarily high
vaiues of the relativistic gamma factor, y, associated with the beam, can be considered. Fur-
thermore, the formulation is carried out in the laboratory frame under temporal steady state

conditions.

The analytical formulation of the general non-linear steady state FEL problem consists
essentially of three parts. In szction II, the wave equations are used tu derive expressions for
the slow spatial evolution of the amplitudes and phases of the scatterec fields in terms of the
driving currents. Then, in section IlI, the driving currents are expressed as functions of the
dynamics of the particle ensemble (electron distribution function). The paiticle orbit equations
are written self-consistently in terms of the scattered fields in section IV. The orbit equstions

describing the motion transverse and parallel to the electron stream ares compietely decoupled.
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SPRANGLE, TANG, AND MANHEIMER

The lincar spatial growth rates, efficiencies and saturated field ampiitudes are derived in section
V for various scattering regimes. Finally a :iumber of analyticai/numerical illustrations in the
high gain scattering regime are given in section V1. The non.lincar particle dynamics is dis-
cussed in some detail. Efficiency cur.ves are obtained, ai*d a method of dramatically inceeasing
the single pass efficiency, as suggested in Ref. {17), by contouring both the pump period and
magnetic ficid is analyzed.’® For instance, efficiency of >>20% are shown to be theoretically pos-
sible at optical wavelengths using this approagh. The basic idea is to grudually slow down the
phase velocity of the ponderomotive wave at the point where the electrons are deeply trapped
in the ponderomotive wave potentials. The slowing down of the wave is accomplished by adia-
batically decreasing the pump field period. Appendix A contains the formulation of the FEL
process with spatial and ‘emporal harmonics in both the radiation and space charge fields. Also
included in this formuiation is the ability of the radiation field to undergo a change in polariza-
tioti from a circularly polarized 0 an elliptically polarized wave as the particle dynamics become

non-linear.

The resulting set of non-linear coupled equations self-consistently relate the spatial
dynamics of the particles and fields. These equations have»bee'n solved analytically in the linear
approximation and the linear dispersion relation was obtained. The full set of non-linear cou-
nled equations are readily solved numerically for the spatial growth rate and saturation level of

the scattered fields.
H. NON-LINEAK EVOLUTION OF SCATTERED WAVES

The physical modei which we will develop is that of a fully relativistic electron beam in-
teracting with a spatially periodic pump magnetic field as depicted in Fig. (1). Cnly spatial vari-

ations along the z axis will be considered for the electron beam, pump field and scavtered radia-

tion field.
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The variable amplitude and period pump magnetic field can be expressed iti terms of the

vector notential

A2) = A,.(:){cos U: k,(z')dz'l é + sinu:: k.(z’)dz’l é,‘. (1)

where the amplituds £,(z) and wavenuniber k,(z) are known and slowly varying functions of
2. The potential field in (1) is a good upproximation to a right-handed polarized helical magnet-

ic field near the z-axis of an appropriate coil winding. The pump magnetic field associated with

(1) is given by

B,(z) = B.,(z){cos “: k(2 dz' + w(z)] é + .wzinU:;l ko(zNdz' + ¢ (z)} ét 2

where

B,(2) = — ((k,(2) A,(2))* + (84,(2)/82))?
and

@ (z) = ~wen™! 84,(2)/82
‘ k"(Z) ilo(Z)

are slowly varying functions of z. The periqd of the magnetic field is
1(z) = 2a/(k,(2) + @9/02) = 2mw/k,(2). (3)

The scattered electromagnetic and electrostatic fields in terms of the vecter potential

A(z,t) and scalar potentia! ¢ (z,¢) are takenr to be
AGD) = A, cos| [kt dr’ - 0t +0) & — 4,sin|f] ko ~ wr +0)) &,

$(zr) = #(2) cos eV — wi +0,). 4a,b)

where the amplitudes of the potentials, 4,(z), 4,(z) and &(z) as well as the wavenumbers
k,(z) and k(z) are slowly varying functions of z The scattered electromaguetic field

repesented by Eq. (4a) is a right-handed elliptically polarized fieid traveling towards the right.
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SPRANGLE, TANG, AND MANHEIMER

The frequency w of the field and ths phases, @ and 0,, are independant of 1 In appendix A, the
general form for the scattered fields is used in the non-linear formulation of the problem.

However, in the main body of the toxt, the fields in Eqs. (4) will be used in order to minimize

the notational algebra.

The evolution of the scattered potentials is governad by the wave equations

o _ 1 ..___
laz’ el A (21) 4 (20),

and

dle(z0) _
320 4w J,(2,0), (5a,b)
where J(z,1) is the driving current density. Substituting the potentials of Eqs. (4) into (5) we

obtain
(w?/c? = k2 (2)) A, (2) cos ¥(z,t)
=21 () F (UK @) sin wan) = - 24, @),
(@¥c? ~ k3(2)) 4,(2) sin $(z,0)
" sz L (4,(2) K2 () cos w(an) = 2 4, ),
—M sin ¢,(z,0) + k(2) ¢(2) cos ¥,(z.1) = == J(z.1), (6a,b,c)
where
¥ = [Tk () &' =~ wt +0,
and

¥ (z) = _’;‘k(z') dr' — wt +0,.
Terms propostional to 82 4/82z2 have been neglected from (6). The negloct of 824 /822 terms is

not central to our formulation, though it can be shown to be an excellent approximation which

BN e,
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simplifies the final FEL equations. The cosflicients of the sinusoidal terms on the left hand
side of Bqs. (6) are slowly varying functions of 2 and independent of ¢ The arguments of the
sinusoidal terms on the other hand ars rapidly varying function of ¢ for 2 fixed. The rapidly

cos
time varying terms, in for example Eq. (6a), can be removed by multiplying it by . $(z¢)

nje ,
and taking the tamporal average over one wave period, i.e., (w/2w) L " di. Performing this

operation on Eq. (6a) as well as similar ones or Eqs. (6b,c) we obtain

(et = k2D Axl) = =22 [ () con 0

L U@ = 2 [, @) sin vl

@ife? = k3 () 4, () = 42 [ 1 ) sin 920 a1
wln
2612 L (4@ kY26 = 42 L7 5 @0 coswan an,
) L 1600 sin 6,0

iv/e
k() $(2) =4 [ U000 co8 $,(e0) a1 (7a-D
II1. DERIVATION OF NON-LINEAR DRIVING CURRENTS
It is now necessary to derive expreseicns for the x, y and z components of the current

densities and perform the time integration specified in Eqs. (7). In general the non-thermal

electron distribution function, written in terms of the slectron orbits, is

Sz p 1) = ng vy f_: 3(z — (1, 1) 8 (p, = (1g, 1))

3(p, — n,{to. 1) 8 (p, = 0, (¢, 1))dto @

where a, is the uniform particle density to the left of the interaction region, i.s., z € 0, v, is

the constant axial electron velocity for z < 0, £(1, t) is the axial position of the particle at

PO T N
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SPRANGLE, TANG, AND MANHEIMER

time ¢ which crossed the z = 0 plane at time o and (s, t) is the momentum vector of the
particle at time ¢ which crossed the z = 0 plane at time ¢, Thermal effects which are charac-
teristic of actual electron beams can be easily included by appropriately modifying the electron

distribution function in (8). The integral over 1, in Eq. (8) takes into account the continuous

e

flow nf particles into the interaction region. The current density associated with this electron : .

distribution is

B ] m!‘h W

163 :)--lelf-l—f(z. p. Nd’p S ]

-'e' Mo V:0 7ty 1)
f = y(n(t 1)) 8 (2 — £(to, 1))dto, ©)

s, g

where y(n) = (1 + 3% nd )2 As will be seen later it is necessary to rewrite Eq. (9) in the

form : C)

~lelng v, f n(tg, 1)8 (¢t = 7(1g, 2))

Y (to. ) 108, O701] ¥ (10)

J(z 1) =

where

l

(g, 2) = 15 + J; m (11)

is the time it takes a particle to reach the position zif it entered the interaction region, z = 0, at

time 1, and v, (1o, 2) is the axial velocity of a particle at position z which was at z = 0 at time ¢,.

The quantity 8¢ (15, 1)/8¢ is the axial velocity v, of a particle at time ¢ which was at 2z = 0

at time 1. Clearly, for J(z, 1) to be finite, v, should not vanish in the interaction region. If v, ' |

vanishes and particles are turned around, multi-streaming develops and the entire concept of o
exp (—iwt) being the only time dependence is undermined (due to, for instance, two-stream

; i
instabilities). We assume here that no particle is slowed down to zero velocity in the laboratory . { 1‘

T e

frame, hence

y(nUo. 1)) mo| €y, 1)/81] = 9. (1o, 1). 12)
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Substituting (12) into (10), the general form for the driving curreni becomes

o 9ty 1)

3,0 = = lelnoveo J_ 2 oy U o D, (13)

Substituting the above form for J(z, ¢) into the right-hand-side of Eqs. (7), we obtain the self-

consistent ampliiudes and phases of the scattcred potentials in terms of driving currents. To

show how ihe right-ﬁaﬁd-sides of Egs. (7) can be reduced by using Eq. (13), ive simplify Eq.

o (7a) as an illustration.

- Substituting the x-component of Eq. (13) into (7a) gives

r/w w©
(0¥t = k; (z)) A, (2) = j; d f... dig G, (tg, 2, 1) 81 = 7(19, 2)}, (14a)

} “ where ‘ 3 0. (ro, 1)

o G ltg, 2, 1) ™ 4—0- le|ngv,o YT 08 Y(z,1). (14b)
| Since the system of particles and fields are in the temporal steady state, particles which
cross thg; z = 0 plane separated in time by zm/ /o will execute identical orbits which are separat-
ed in time by 27/w. It is. therefore, possible to define an initial bcam segment, "beamlet,” for
which all possible steady state orbits of the actual bearm particles are represented by the particles
in the beamlet, but are displaced in time. The axiai length of the beamlet is clearly 27 v,¢/w.

With these considerations in mind we find that the function G.(t,,z,¢) and. r(r,, z) have certain

periodic properties in their arguments which permit the integralr in (14) to be greatly

Wﬂmﬂm’mmwmn i h;;,‘;“ﬂ‘\@ﬂlulf“‘”f ot

simplifiei. Specifically we note that

D'=;

= 2N 27N

Ei,% Gilty, 2.1) = Gelt, + o’ zt + _w—]'

il and

Ti “\igs z) - T [o -+ 2—"—N—’ zl - M‘ (lSa,b)
¥ ” ”

ks ]

f where N = 0, +1, 2, .... The ¢ integration in Eq. (14a) is over one wave period, 0 to

27/w. From Eq. (15b) we see that over this range of r the argument of the delta function will
vanish over an interval in ¢, equal to 27/w. Therefore, it is not necessary to integrate over ¢,

from —oo to +o0, Finally from the property of G, (t,, z,¢) expressed in (15a) we find that

B ot e a e
gpnd q I
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/. -~ - .
.fo d‘ f-. d!o Gx(’o. ZJ) 8(' "‘7(’9' z)}. L

= [ 6t 270, 20 at, - 16

This can be seen most easily in a diagram, of the region of integration in Fig. 2, whisre the en-
tire (1, 1,) plane is broken into squares of 27/w on a side. Because of the symmetry property
expressed in Eqs (15a) and (15b), the value of the integrand ',il unchanged along a diagonal; |
this is indicated b} cortain squares having the same letter, Ciearly then, an integral in the verti-
cal direction, over the shaded squares, is the same as an integral in the horizontal direction,
over the slashed squares. Substituting (16) together with (14b) into (14a) results in a
simplified form for Eq. (7a). All the integrals on the right hand side of Eqs. (7) can be re-

duced in exactly the same way. Doing this we find that Egs. "(7) ‘can be put into the form

(w¥/c? = k2(2)) A,(2)

V20 2n/e (1, 71, 2)) ’
mAleln "t dy G o V) de,

212 (z) %(A,,(z) k12 (2))

Yo /e (t,, 7(t,, 2))
- —4 |e| no c fo "'('gl f('ﬂ' z))

sin y(z,7(1,,2)) dt,,

(w¥e? = k1 (2)) 4,(2)

Veo fzr/- 0yt (85, 2))
0

-—4 |e| n, f w D) sin ¢ (z,7(s,,2)) dt,,
2\%0» 0

2k 12 (2) % (4,(2) kY2 (2))

Y0 f"/- 0y to, 7(t,, z)')
0

-—4 |e| n— @ " GD) cos y(z,7(1,,2)) dt,,

w/o
—i—a 0(:) - —4 Iel no Vio J;z sin 'l'.(l. 7(‘0'2)) d‘°‘

k(z) d(z) = —4|e|n, v j;h/“ cos ¥,(z,7(t,,2)) dt,. (17a-f)

10
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Notice that on the right-hand-side. of the above equations the single integrals over 1, ore trom 0

to 2m/w. AS we will see, these iniegra’ls can be evaluated humericaily by followiirg the orbits of

a relatively small number of particles which enter the interaction region iq any single time in-

oo

terva' of duratiorn 2:/x. 'Jpnn deriving tha general orbit equations for the particle ensemble,

in the next section, we wiil assume that the scattered eloctromagnetic wave is circularly polar-

B ized, i.e., A, (2).= 4 ,,'(zv). This assumption is clearly nof centra’ 10 our formulatit;n‘.
IV. PARTICLE ORBIT EQUATIONS

We now express the particle orbits, which are needed for the evaluation of Egs. (17) in
terms of the new independent variables ¢, and z. The forces exerted on the vlectrons arise
P from the pump aud scattered potentials given in Egs. (1) and (4). We immediately note that
| the transverse canonical momenta of the particles is conserved. Tharefore, if both the pump

and scattered flelds are zero as z — —oo, the transverse particle momeuta are given by

.z, 1) = J%L (Ao (2) + 4,G D),

and

py(z' t) - ‘Lec-l‘(Aoy(Z) + Ay(z, t)). (18.’b) ;‘.

Using Eqgs. (18) the longitudinal component of the force equation can be put into the form

4
s
o,
i
3
:

v
oM

ORI S RN Y

dp,(z, t) - —lelz
dt 2y(z, 1) m,c?

where p,(z, t) is the axial momentum and the relativistic gamina factor is

2
[-%(A,(z) + A 00 = 290 ) T o 8 :)], (19)

p’l(z‘ t) " !
7(2. t) = -—-z-—-z—-] .

(20) |

1+ 185 @) + AG 07+

Equations (18), (19) and (20) specify the particls dynamics in terms of the pump end scattered

Pt fields, The transverse and longitudinal particle motion is formally decoupled. To write Egs.

(18) and (19) in terms of the new independent variables z and ¢,, we note that
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LA Vs

. zl!
t- 7((0, 'Z) - tO "TJ:] dz'/V,(fo. Z'),

d d :
a = Ve G
where V,(z. 1) = v,(1,,z). Note that -%‘(which follows a particle orbit) # sa; (which is taken o
' i .
ar constant time).
‘In terms of zand 7 we simply get
I
2z, T) -,L*;L (4,(2) + A2, 7)), L

py (2, 7) = J%l--(Aoy(z) + A,(z, 7)),

myc?

dpiiz 1) |e2la W2 D 40 —
—a az(A.,(z)-a—A(z, 7))% =2y(z, 1) e 3z é(z, 7)]. 21a,b,c)

dz

We have expfe'sse'd the particle o‘rbits in terms of the entry time f, and asial position z. Note
that onr definition of ihe momenta implies hat, 0, (s, 7) = p (= ‘r) n,(t, 7) = p, (2, 7), ané v
n:(ts, 7) = p, (2, 7) = y(z 7) m¥,(z 7). At this poiot Wé"t'ake the scattered electromagnetic

wave to be circularly polarized and set 1,(z) ﬁ-.qy(é)-A {z). To obtain the finai set of equa- ‘
tions fo_r 'the amplitude A4(z) uid wavenumt}e'"r k. (2) we first combine Eqs, (17x) and (17b) '@
with Eqs. (17c) and (17d) respectively. Using the expressions for m, and m, given by Egs.

(21a,b) we arrive at the following expressions . !

v" .

in/w
@fe? = k3D AG 0 T mpne 2 [ 0 7, 2)

{A,,(z) cos| f) (kal) + k()) d' = wr(l,, ) + 6] + 4(:)] d,.

" N ey

okl s
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12(,) | 12( ) 0} o (¥
ki (2) E(A (z) k}? (@) = =53 Mm% o Jo ;' (4, (1, z)‘)

{A,(z) sinl J;z(k+(z') + k,(20) d2' ~ w1ty 2) + 0)} dt,. (22a,b)

where we have used Egs. (1) and (4a) for A,(z) and A(z, ¢) and w;, = (47 (e]? n,/mo) 2,

For completeness we rewrite Eqs. (17¢) and (17f) for the scalar potential

! — 2 x/m z
) 8 ([ 04— )

ki2) 8(2) = -31 — i"m— L7 con [ k(@Dat' ~ wrlt,2) + 8., (2300

The talevant particle dynamics is contained in Eq. (21b) which is vewritten in the form

—*—“——} (24)

2
‘dn':ll‘"r)-v M‘[a (A, (2) + A7) - 27(“)

where

2 2t, ) 12
y(o7) = ll rAela @ +A G+ -"-’—(—2—;’—] ,
mic , mZc

z y(z',‘r(to,Z')) m,
w2 = 1o+ f, T

(A,(2) + Az, 1) = 42(2) + A%(2)
+ 24, A ) co8 [f a(@) + k&N = wr + 6], (258,5,0)
The aon-linear formulation of the FEL is fully described by Egs. (22), (23) and (24)'. The

ponderomotive potential piays a central role in axially bunchirig the electron. From Eq. (24)

we see that this potential is given by

5= —lel 4@ a0 cos ([ ) + koD a' - w7 +9) (26)
YoMo€
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SPRANGLE, TANG, AND MANHEIMER

The amplitude and phase of the scattered fields as well as the axial beam momentum all vary
with a characteristic axial length which is much longer than the pump wavelength L This fact
allows for inexpensive numerical simulations to be performed in the laboratory frame with ex-

tremely high gammae electron beams.

To see that the system quantities vary on a scale length long compared to /, we note that .

L T2

the characteristic lehgth, as estimated from the arguments of the sinusoidal terms on the right-
hand-side of Egs. (22), (23) and (24), is roughly equal to L = (k, + k, — w/v,)”!. However,
since the ‘requency of the scattered radiation is = ck = (1 + 8,) y2v, k,, we find that

L >> 1/k, = I/2m.
This fact permits us to so/ve numericaily the FEL equations for arbitrarily high gagmma beams.
The more conventional simulation ;pproaches suffer from the problem of large tempora! or spa-

tial scale differences eaven in the beam frame of reference.

To complete our formulation of FELs we need an expression for the efficiency. The
efficiency can be defined as the ratio of the electromagnetic energy flux increase to the initial

electron energy flux, that is

¢ <E(z0) x B(z,t)>, — <E(o,t) x B(o,1) >,
o ) @n
ar Voo lto (Yo—=1) My c? : =

where E = ¢"19A/81, B = &, x §A/8z, <:-->, denotes an average over the field period 27/w,

and v, n, and ¥, are the initial beam axial velocity, density and total gamma factor.

Using the vector potential in Eq. (4a) and taking the radiation field to the circularly polar-

ized, i.e., A, = A, = A, the efficiency in Eq. (27) takes the form

P o (ki (2)42G) - k(0)4%0)
"'3. Vzo (70- 1)

and is maximum when the radiation fields saturate.

el

m,c

n= (28)
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V. DERIVATION OF LINFAR GROWTH RATES, EFFICIENCIES
AND SATURATION FIELD AMPLITUDES

In this section we present the salient features of the FEL in the linear regime. Results for
the linear growth rate and expressions for the saturation efficiency and radiation amplitude are
obtained in the high gain case, i.e., where the radiation field amplitude has e-folded at least a

few times. For a more detailed derivation of these quantities see Refs. (17) and (18).

In the high gain linear regime the excited space charge and vector potentials are of the

form

d(z,1) = -“—(20—);’(""“‘) + ¢,

A(z) = ig?_)_ et + ié,)) + c.c., (29)
where #(0) and 4 (0) are the potential amplitudes at the input end of the interaction region,
z=0, and the wavenumbers, k and k. are complex and independent of z. For a magnetic pump
of the form in Eq.(1) with constant amplitude and period and cold electron beam, the disper-

sion relation is

D(w, k) ((@=v,,k)? ~— wd/(yiy,))= —f% (B0 Bu)? D(w, k), (30)
where D(w, k) = o?-c*?—-w}dly,, k,=k -k, k, is the pump wavenumber,
w, = (4w|e|?n,/m,)!? is the beam plasma frequency, v, is the axial beam velocity,
Vor = |e|B,/(y,m,ck,) is the transverse beam velocity, B, is the pump amplitude,
Yo= (1 = B2 —BL) V2 Bu = vyl B ™ violc and v, = (1 — B,,) V2 Since the elec-
tromagnetic wave approximately satisfies the dispersion relation w/c = k, we can replace
D(w, k,) and D(w, k) by =2k, (k, — (w? — wd/y,)"/}/c) and -2k k,c? respectively. The

dispersion relation can now be put into the simple form

8k (8k + 2¢ k,/v,,) (8k — Ak) = —alk,/2, 31)

15
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SPRANGLE, TANG, AND MANHEIMER

where k= /vy + € ko/y,o + 8k, 8k is complex, [8k| << k, ¢ = w,/(\fy, € k),
Ak = k, — of/(2cyl), and a® = (8, k,)2. Equation (31) assumes that the beam is relativistic
v, = cand w >> wy/\[y,. Two distinct regimes can be distinguished from the dispersion re-

lation in (31).
a) Weak Magnetic Pump Limit

For u pump magnetic field strength such that 3, << B, = 4(£/y2)"? the space charge
potential dominates th:: ponderomotive potential and collective effects play an important role.

In this regime of scattering the ‘dispersion relation in (31) yields

sk = B8 - L Ty = e (32)
for the growing root. Maximum spatial linear growth occurs when there is no frequency

mismatch, i.e., Ak = 0 and is given by
Tonax = — Im (8K) gpy = % (aly, /O3, (33)

b) Strong Magnetic Pump Limit

In this regime, defined by the condition 8,, >> B,,,, space charge forces are dominated
by ponderomotive forces. This is a single partice scattering regime and Eq. (31) reduces to
(8k)%(8k ~ Ak) = — a? k,/2. (34)
The maximum spatial linear growth rate according to (34) occurs for exact frequency matching,
i.e., Ak = 0 and is given by

Vi

rmn = — Im (ak)n‘ux - _2'4/_3 (epol)UJko_ ) (35)

To obtain est mates for the saturation levels in the high gain regimes we resort to heuris-
tic arguments based on electron trapping dynamics. It can be argued that at saturation, when

electrons are deeply trapped, the axial velocity of the electron beami has decreased by the

16
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amount 2Av where Av = v,, — v, is the difference between the equilibrium axial beam velocity
and the initial phase velocity of the total longitudinai wave, i.e., v,, = w/Re(k). The decrease

in the particie kinetic energy is

OBy g = 2707:’0"‘0 Vv, (36)

so the ener,y conversion efficiency becomes

AEx 5

Getmet e

n-

=292 (v,, — /Re(k))/c. - @D
Substituting Re (k) = w/v,, + £%,/7 + Re(3k) and & = 2y2 ck, into (37), the expression for
efficiency becomes

n = §/y,, + Re{8k)/k., (38)
where Re(5k) is determined from the solution of the dispersion relstion in (31). Using Egs.
(31) and (38) we find that in the weak pump and strong pump limit the growth rate maximizes

when Ak =0, iec., o= Zy,’,ck,,, and the efficiency at saturation is respectively

n- f/‘)':o. (39)

and

0= 27(EBD Y + E/v 0. (40)
Applying the conservation iaw for total energy flur we find that the megnitude of the vector po-

tential at saturation is

€70 mac2 1/2
lAnd [27‘30 lel n. 41)

where 7 is given by either (39) or (40) depending on whether the weak or strong pump limit is

applicable.
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SPRANGLEF, TANG, AND MANHEIMER

V1. RESULTS AND DISCUSSION

In this section we presen: the numerical results fo: the coupled non-linzar FEL equations
in (22), {23) and (24). linstrations for a wide range of paratneters ranging froin the submil-
limeter to the optical radiation regune are given. The mono-energetic clectron beam enters the
interaction region at z = 0 with a uniformldensity. The magnetic pump field given in (1) is as-
sumed to be built up adiabatically from z € 0 to its initial value at z = 0. In al: of our numeri-
cal simulations a small amplitude radiation field is introduced as a perturbation at z = 0 and al-
lowed to grow spatially and self-consistently accotding to the FEL equations. The small initial
radiation field, typically less than 0.1% of the saturated field amplitude, sliows for a long spatial
region of linear interaction and, hence, for an accurate comparison with the linear theory
presented in section V. Furthermuti., space charge fields are included in all of our numerical
illustrations even though in some cases the ponderomotive field may dominate the process as is

the case in the strong magnetic pump scattering limit.

We will first consider two examples where thc magnetic pump parcmeters are ﬂx_ed. ie.,
constant amplitude and periov  Fuither.10re, we will show that efficiency can be increased to a
few 10's of percent even in the optical regime by contouring the mag-3tic pump period .nd

amplitude.
a) Constant Magnetic Pump lilustrations

Two examples will be discusscy in some detail: 1) optical radiation at A = 0.75 um from
a 66 McV electron heam and 2) submillimeter radiation at A = 338 um with a 2 6 MeV elec-
tron beam. Table 1 lists the salient parameters for the magnetic pump, electron beam and out-

put radiation of both examples.

18
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For the optical radiution case, example 1, the magnetic pump amplitude ig 6.0 kG and the

| period is fixed at 1.5 cm. The 66 MeV (y, = 131), 2 kA eloctron beam has a transverse equili-
brium valocity of v, = 5.4 x 10~? ¢ with the given value of magnetic pump field. The critical
transverse velocity, see .?ection vV, is v;.,,, = 1.5 % 1073 ¢, hence the scattering process is in the

‘strong pamp regime.

Figure (3) shows the amplitude of the vector potential of the scattered radiation, 4(z),
and the spatial growts rate, T = §(InA (2))/8z, us s function of z. Those plots are for an optical
frequency of @ = 2y2 ck, = 2.525 x 10! sec™!, Notice that in Fig. (3) there is a long spatial
region where the growth rate is fairly constant. This is the linear region of the interaction. The
value of the radiation frequency in this figure has been chosen to maximize the linear growth
rate, i.e., zero frequency mismatch, Ak = 0. The linear e-folding length associated with this

output frequency is 38 cm.

Figure (4) shows a comparison between the spatial growth rates obtained from the linear
regime of the numerical simulation of our FEL equations (crnsses (x)) and the linear growth
rates obtained from the dispersion relation in Eq. (30), (solid curve) over the frequency spec-
trum. These two independent calculations of the linear growth rate are in excellent agreemeu.
Figure (4) also compares the efficiency at saturation obtained by solving the FEL equations

(circles (O)) with the calculated values of efficiency using electron trapping arguments (dotted

gyt

curve) given in section V. Using the value of efficiency for maximum linear growth rate, we

find from Eq. {41) that the saturated vector potential amplitude is A, = 28 volts, correspond-

r§ ing to an efficicncy of 0.37%, whereas Fig. (3) gives a value of 33 volts for 4,,, corresponding
E ' to an sfficiency of 0.52%. The higher calculated efficiency can be explained by the slight in-
} creasé «f the wave number of the scattered radiation, k., just before saturation, solid curve in
i Fig. (5). When k., incrsases, the phase velocity of the ponderomotive potential,
& |
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o/(k(2) 4 1,(z)), decreases. As the electrons become trapped at the bottom of the potential
well, the ponderomotive wave slows down slightly, hence, the particles are able to transfer
more kinstic erergy to the scattered radiation. This in clearly a non-linear effect, which linear
theury could not predict. The dotted curve in Fig. (5) is the variation of the wave number of
the space charge wave. The effects of the space charge wave is negligibls, since in the strong
pump liniit, example 1, the ponderomotive potential is much larger than the space charge po-

tential as can be seen in Fig. (6).

To understand the ﬁhenomenon of trapping, phase space plots are a revealing tool. Fig-
ures ('h-d)-. are plots of the relative time the particles in one beamlet cross the following axial
positions: z = 0.0 m, 2.0 m, 40 in, 4.3 m and 4.5 m. Twenty particles are labeled within the
bearnlet. At the initial position, z = 0, the particles enter at equal intervals in time since they
have uniform axial velecity, v,,. At z = 2 m down stream into the interaction region, the parti-

cles are in the linear regime where the growth rate of the scattered radiation is constant. Some

‘particles have gained energy while others have lost energy depending on their phase relation

With the ponderomotive potential. At z = 4 m, Fig. (7b), the phase space plot begins to show
the signs of trapping. Many of the particles are crossing the z = 4 m plane at about the same
time. However, their velocity spread is large. Figure (7c), at z = 4.3 m, depicts the particles
before saturation and shows definite signs of trupping. At z = 4.5 m, particles labelled 4-9 in
Fig. (7d) shows 'spatial bunching and small velocity spread; these particles are deeply trapped.
If the amplitude and period of the mlgnétic pump field is held fixed, the scattered radiation will

reach its maximum value at this axial position.

Our non-linear formulation is also applied to a case where the output radiation is in the
submillimeter regime, example 2 in Teble 1. The pump wavelength and pump magnetic field

amplitude are 2 cm and 2.5 kG, respectively. The electron beam energy is 2.6 MeV, (y, = 6);
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the beam current is § kA and the beam radius is 0.3 cm. The transverse equilibrium velocity is
vo. ™ 0.078 c, and the critical transverse velocity is v, = 0.22 c¢. In the example we are bare-
ly in the weak-pump regime, since, B, is less than three times that of 8,,. Space charge
effects are, therefore, important in this example. Figure (8) is a plot of the spuce charge and
ponderomotive potential for o = 5.05 x 10!2 sec™! (A = 338 um). This figure shows that col-

lective effects are of the same order of magnitude as the ponderomotive forces.

Figure (9) shows the amplitude of the vector potential amplitude of the scattered radia-
tion, A4(z), and the spatial growth rate, T = §(in 4(2))/9z, as a function of z for

o =505 % 10'? gec™!,

Comparing the linear spatial growth rate obtained from the dispersion equation in (30),
(solid curve in Fig. (10)), with the growth rate from the linear regime of the non-linear calcula-
tion (cross (x)), we again obtain excelient agreement. The theoretical efficiency based on Egs.
(38) and (31) (dotted curve in Fig. (10)) as compared with the results using the non-linear for-
mulation, (circles (O)), is remarkably good. The changes in wave number of the scattered radi-
ation, k.(z) near saturation (solid curve in Fig. (11)) did not enhance the efficiency because

the effect is balanced by the increase in the space charge potential wave.

The particle phase space plots of Figs. (12a-c), are very similar in nature to those in Figs.
(7a-d). Figure (12a) contains phase plots at z = 0.0 m and 0.35 m corre¢sponding to the initial
position and a point in the linear interaction regime. At the z = 0.7 m plane just before satura-
tion, Fig. (12b), shows the beginning of particle trapping. Figure (12¢) contains the phase

space plot when the radiation field has saturated, z = 0.77 m.

Figure (13) shows the scaling of the linear spatial growth rate and maximum efficiency as

a function of the pump magnetic field amplitude, 3,, at a fixed output frequency. The output
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radiation frequency is held constant by requiring that y,o and ky be kept fixed. The electron
beam and magnetic pump parameters are basically the same as those of example 1 in Table I,
except that the magnetic pump amplitude ranges from 0.25 kG to 6 kG. To keep the frequency
fixed, while B, is varied, the electron beam energy is changed such that v, is held at the con-
stant value of 100. The output frequency used for Fig. (13) is chosen at the maximum growth
rate, which is very close to @ = 2y c ko = 2.525 x 10'® sec™! corresponding to a wavelength of
A= 075 um. The critical transverse velocity, as discussed in section V, occurs for these
parameters at 2 pump magnetic field of By = 1.15 kG. Above this value of pump field the FEL
process is in the strong pump regime, while sufficiently below By = 1.15 kG the scattering pro-
cess is in the weak pump regime. In Fig. (13) the crosses (x) denote the linear spatial grow:h
rate obtained from the non-linear simulations, while the solid curve is obtained from the
dispersion relation in Eq. (30). Also in this figure is a comparison of efficiency estimated from
Eq. (38) using trapping arguments (dashed curve) and actual numerical simulation results (cir-

cles (0)).
b) Efficiency Enhancement by Contouring Magnetic Pump Period

According to Eqs. (24) and (26) the phase velocity of the total longitudinal wave poten-

tial, i.e. ponderomotive plus space charge is
Vo = of (k4 + k,) (42)
where w and k., are the radiation frequency and wave number and k, = 2w// is the wave
number of the pump field. It hes been assumed in writing (42) that the wavenumber of the
ponderomotive and space charge waves are identical. The longitudinal wave potential is respon-
sible for axially bunching and eventually trapping the electrons. If the mﬁanetic pump period is
held fixed, the radiation field reaches its maximum value when the electrons are trapped at the

bottom of the longitudinal potential wells, as can be seen for example in Fig. (7d). Just before
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the radiation field saturates, the electrone are somewhat spatially bunched and trapped near the
boitom cf the wave potential, see Fig. (7¢c). The trapped electrons at this point can be con-
sidered, for our purpose, to form a macro-particle. By appropriately reducing the phase velocity
in Eq. (42) as a function of axial distance down the intccaction region, the kinetic energy of
this macro-particle can be further reduced and converted into wave energy. The phase velocity
must be reduced in such a way so that the inertial potential lof the trapped macro-particle is al-
ways less than the potential of the growing longitudinal wave. According to Eq. {42), the phase
velocity can be reduced by decreasing the period of the magnetic pump as a function of z. In
order for the macro-paﬁicle to remain trapped, the spatial r.te of change of the pump period.
must be sufficiently slow. In principle virtually all the kinetic energy of the macr. particle can
be extracted and converted to wave energy. However, not all the beam particles comprise the
macro-particle, some are untrapped. Converting particle kinetic energy into radiation by vary-
ing the wave velocity is somewhat analogous to the reverse process of particle acceleration in
say an RF linac. In a wave accelerator, the energy associated with the accelerating slow elec-
tromagnetic wave is converted into particle kinetic energy. However, the wave energy in these

accelerators does not decay, since it is continuous)y resupplied by external microwave sources.

We will illustrate efficiency enhancement by contouring the pump period while holding
the amplitude of the pump magnetic vector potential consiant, using the parameters of example
1 in Table 1. The same principle of efficiency enliancement can also be applied to example 2.
Figure (7¢) shows that a z = 4.3 m, the electrons are somewhat spatially bunched at the optical
wavelength A = 0.75um and the radiation field is nearly saturated. At this point, we simply in-
creased the pump wavenumber k,(z) exponeatially as a function of z instead of optimally con-

touring the pump period in units of cm™! according to the empirical formula.

LY
&

k() 1.5 2Kz
o\Z) =
%;— + [exp(0.002(z—z))—1] % 2 %
23
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where 2z, = 4.3 m. The perivd of the magnetic pump, /(z), is depicted in Fig. (14). The spatial
decrease of [ results in a large increase in the amplitude of the wave vector potential as shown
in Fig. (14). For this particular case, the contouring is terminated at z = 13 m and the
efficiency at this point is already 20%. In principle, the pump wavelength contouring can be
continued and even higher efficiencies achieved. Figures (15a-d) are the phase plots with con-
touring at z= 5 m, 7 m, 10 m and 13 m. At z = 5§ m, the majority of the particles are well
bunched. At z = 7 m, 12 out of 20 particles are trapped by the ponderomotive potential wells;
the same 12 particles remain trapped even at z = 13 m. Since the amplitude of the pondero-
motive potential is proportional to the radiation field it increases as the radiation field increases.
Once the particles are trapped the particles remain trapped and continually lose energy if the

pump period, /, is decreased adiabatically.

It should be noted that it is not appropriate to simply increase the pump magnetic field
amplitude as a function of axial position in order to enhance efficiency.’’ Increasing B, spatially
deepens the ponderomotive potential well but it also slows down the axial electron velocity and

thus synchronism is lost. To maintain synchronism k, must also be increased.
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Appendix A

GENERAL NON-LINEAR FORMULATION

In this appendix, we outline the general formulation of the FEI. equations taking into ac-

count spatial harmonics in the magnetic pump field as well as spatial and temporal harmonics in

the scattered fields. Furthermore, thc polarization of the electromagnetic field is arbitrary and

permitted to evolve according to the non-linear particle field dynamics.

The vector potential of the periodic pump field containing spatial harmonics of variable
amplitudes and wave numbers is expressed as
Aol) = T Ayn(a) {cos[m S k)d) & +sin [ S "ka(z')azjé,}, (AD)
where the amplitude and fundamental wavenumber are slowly varying function of z. This field
is not curl free, but is a good approximation to the exact helically symmeitric ficld near the
r = 0 axis, when mk,r, < 1, where r, is the radius of the electron beam. The pump niagnetic
field associated with (A1) is given by

B,(z) = ¥, B,.(2) [cos(m fozko(z')dz’ 4 <p,,,(z)] éx

mm]
+ sin[m f:k,,(z')dz' + ‘p,,,(z)] éy}.

where

94, ,(2) e
9z !

B, m(z) = — [(m k(2) A, m(2))? +

and

o) = —tan"‘[[gﬁ:—z—(z—)-] / (m k.,(z)Ao.m(z))l
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ave slowly varying functions of z. The period of the mth spatial harmonic of the pump magnetic

. field is a function of z and is

3 | y(2) = 21r/ m k,(z) + —a—&"ﬂ]]
L! 62’
‘ where
| m k. (z) >> %(_z_)_
9z

i - Similarly the general form for the scattered eleciromagnetic field and electrostatic field in

3 terms of the vector potential A (z,¢), and scalar potential ¢ (z,¢)

A(z) = Y {4,.(2) cos(nj;zkx,,, (z)dz' — nwt + 0,,,,]3,,

i

|

]

L n=1

‘ + 4,,(2) sin [ n f:k,,,,(z')dz' - nrwt + 0,,,,] éy]. (A2)
and ’
ozt) = T 6,(2) cos[lfozk,(z’)dz’ —lot +6, | - (A3
I~

where the amplitudes of the potentiais 4, ,(2), 4,,(z), and ¢,(z) as well as wave numjbe'rs

kya(z), k,,(z) and k,(z) are slowly varying functions of z

Using the same procedure as used to derive Eqgs. (7a-f) we obtain the following set of

equations for the spatially slowly ‘varying amplitudes and wavenumbers.

2 - i’:ll’_ H .

n’(% -~ Ic},,(z)l Ay p(2) = —3—“-’—;0 Jo(z,0) cos[nj; kx,,,(z’)dz"— nwt + 0,,_,,]dto. _
] 4o a z

Zn kM2(2) 3;( Ax,,(z)kxff,z(z)] -=), J.(z,0) sin[nfo kyn(z)dz' — nwt + Ox,,]dto. ’

. 2 Er' . z
,"zl% - kyz.n(l)] Ay (2) = -“—c‘ifo J,(z,1) sin[nfo kyn(z)dz' ~ nwt + Gy‘,ldt,,.
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s e .
2n kMA2) -5-2-[ A,,,,(z)k'”(z)' -2 g0 .cos[nL'ky,,,(z’)dz’ - nwt + Oy,,,ldt,.

2z
12?%52_)_ - 4.‘;0 J,(ZJ) sin("f:kl(z_')dz' ~ lwt + Oz,l]dfo.

x : '
Pk ¢(z) = 4_[." J(z,0) cos(lfo k(z)dz' — lot + 0,.,]dt,,. | (Ada-f)

" Substituting the expressions for J(z,r) from Eq. (13), into the Egs. (Ada-f) and integrating, we

ootain

¢

2
nI‘-‘?'iz— - k}_,,(z)] An(2)

/
2n/w 1)‘(!4,.1'\!0.2)) 'slnf:kx,n(z')dz' — nm‘l'(to'Z) + 9,:,,,]dlo.

-4|e|"° —e 0 n,(t,,,-r\t,,,z))

2 kMAz2) --l 4,,,(2)k,‘{,2(z)l

v,,, 2e/e (8, 7(1,,2)) [ s N ] ’
- —4le|n, —~~w I TR TNES)) sin nfo kya(z20dz’ — nwt(t,,2) + 0, ,4)dt,.

2[ - k},(z)] A,,,,(z)

2n/w (1, 7(8,,2)) o '

= —4le|n, — fa ")Z(to,‘r(f ") n[nfokyl,,(z)dz - n_w'r(to,z) + oy,,,]m,.
20 kM2 (2) %[ Ay,..(z)kyb’.’(z)]'

2w/w 1, (8, 7(4,,2)) r(4,,2) o2 N g .

- —4!e|n, fn "h(fmf('o.l)) s(nJoky,,,(z Vdz' ~ nwt(ty,,z) + 0;"-"“"“'

9¢,(2) LICN :
l sz = —4|e|n, v, fo sm(lfo k(z)dz' = lar(t,.2) + 0,,,]dt,,.

. 2w/
r 2k, ¢,(z) = —4leln, vy fo ¢ cos(lfzk,(z')dz' —lor(t,,2) + Ozl,ldto. (ASa-f)

27

eI S

R

“Eabia BT ST

Tl



SPRANGLE, TANG, AND MANHEIMER

The expression of the particle orbit equation, (14), remains the same.

(ASa-f), and along with the definitions of momenta,

. (z7) = J‘ZJ(A,,,X () + 4.3z 7)).
mn) =12, @) + 4,6,

and

n:(z,7) = m,y(z,7) V. (2,7),
form the full set of self-consistent FEL equations.

Equations (14),

ol ko

(A6)

Setting n = m = | = 1, and requiring k, (z) = &k, 1(z) = k.(z) and 4,,(2) = 4, ,(z) =

A(z), equations (ASa-f) reduce to the fundamental harmonic equations in (22a,b) and (23a,b)

for a circularly polarized electromagnetic field.

28

O R i

oy



10.

11

12.

13,

14,

NRL MEMORANDUM REPORT 4034
REFERENCES
H. Motz, J. Appl. Phys. 22, 527 (1951).
J.M.J. Madey, J. Appl. Phys. 42, 1906 (1977).
R.B. Palmer, J. Appl. Phys. 43, 3014 (1972).
V.P. Sukhatme and P.W. Wolff, J. Appl. Phys. 44, 2331 (1973).

JM.J. Madey, H.A. Schwettman and W.M. Fairbank, IEEE Trans. Nucl. Sci. 20, 980

(1973).

A.T. Lin and J.M. Dawson, Phys. Fluids 18, 201 (1975).

A. Hasegawa, K. Mima, P. Sprangle, H.H. Szu and V.L. Grimatstein, Appl. Phys. Lett.

29, 542 (1976).

F.A. Hopf, P. Meystre, M.Q. Scully ana W.H. Louisell, Phys. Rev. Lett. 37, 1342 (1976).

F.A. Hopf, P. Meystre, M.O. Sully and W.H. Louisell, Optics Comm. 18, 413 (1976).
W B. Colson, Phys. Lett. S9A, 187 (1976).

N.M. Kroll and W.A. McMullin, Phys. Rgv. Al17, 300 (1978).

P. Sprangle and V.L. Grar;atstein. Phys. Rev. A17, 1792 (1978).

$.B. Segall, Feport No. KMSF-U806 Oct. (1978). .

L.R. Elias, Phys Rev. Lett. 42, 977 (1979).

il s ol

b e e S e e

b 4l ok b |

L

Ay L, o Tl i

S, e



SPRANGLE, TANG, AND MANHEIMER

15. P. Sprangle and A.T. Drobot, J. Appl. Phys. 50, 2652 (1979).

16. 1.B. Bernstein and J.L. Hirshfield, Phys, Rev. Lett. 40, 761 (1978).

17. P. Sprangle, R.A. Smith and V.L. Granatstein, NRL Memo. Report 3911 (1978). (To be

Lol

published in Injiared and Millimeter Waves, Vol. 1, K. Button (ed.), Academic Press,
1979).

18. P. Sprangle and R.A. Smith, NRL Memo. Report 4033 (1979).

e e e

19. P. Sprangie and V.L. Granatstein, Appl. Phys. Lett. 25, 377 (1974).

!
|
l
!
i
i

20. W.M. Manheimer and E. Ott, Phys. Fluids 17, 706 (1974).
21. V.IL Miroshnichenko, Sov. Tech. Phys. Lett. 1, 453, (1975).
22. F. Sprangle, V.L. Granatstein and L. Baker, Phys. Rev. A12, 1697 (1975).
2. . Kwan, J.M. Dawson and A.T. Lin, Phys. Fluid 20, 581 (1977).
24. W. Colson and S. Ride, private communication.
25. V.L. Graqatstein and P. Sprangle, IEEE Trans. MTT-25, 545 (1977).
. 26'. A. Hasegawa, Bell System Tech. J. 57, 3069 (1978).

27. C.W. Planner, Phys. Lett. 67A, 263 (1978).

28. L.R. Elias, W.M. Fairbank, J.M.J. Madey, H.A. Schwettman and T.I. Smith, Phys. Rev.
Lett. 36, 717 (1976).

30




A Z_H”\;E%:*v"
't

T v

29.

30.

1.

32,

33.

34,

3s.

36.

37.

NRL MEMORANDUM REFORT 4034

D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman and T.l.

Smith, Phys. Rev. Lett. 38, 892 (1977).

V.L. Granatstein, M. Herndon, R.K. Parker and S.P. Schiesinger, IEEE Trens. Mi-

crowaves Theory Tech. MITT-22, 1000 {1574),
J. Nation, J. Appl. Phys., to be published (1979).

V.L. Granatstein, S.P. Schlesinger, M. Herndon, R.K. Parker and J.A. Pasour, Appl.

Phys. Lett. 30, 384 (1977).

D.B. McDermott, T.C. Marshall, S.P. Schlesinger, R.K. Parker and V.L. Granatstein,

Phys. Rev. Lett. 41, 1368 (1978).
R.M. Gilgenbach, T.C. Marshall and S.P. Schiesinger, Phys. Fiuids, 22, 971 (1978).
T.C. Marshall, S. Talmadge, and P. Efthimion, App. Phys. Lett. 31, 320-322 (1977).

To our knowledge this technique for enhancing efficiency is also being analyzed by N.M.

Kroll and coworkers (private communications).

While this work was being submitted, the paper by A.T. Lin and J.M. Dawson, Phys. Rev.

Lett 42, 1670 (1979), dealing with efficiency enhancement by increasing the magnétic

pump amplitude, came to the authors' attention.

k)

AR

o it

) e,

PR

v

et ein AN s 4 1 AR S

ok S T N e o

1 it tral

A ey siy o ie

i
'
t
. ]




SPRANGLE, TANG, AND MANHEIMER

Table I ~ Optical and Submillimeter Iltustrations of FELSs
(Constant Magnetic Pump Parameters)

Magnetic Pump Parameters Example #1 Example #2
Pump Wavelength ! 1Scm 2.0cm
Pump Amplitude B, 6.0 kG 2.5 kG
Electron Beam Parameters
= ——

Beam Energy E, 66 MeV (y, = 131) | 2.6 MeV(y, = 6)
Beam Current 1, 2kA SkA
Axial Gamma Yo 100 5.4
Beam Radius r, 0.1 cm 0.3 cm
Equil. 1 Velocity B.L 6.4 x 1073 0.078
Critical 1 Velocity Beri 1.5 x 1073 0.22
Beam Strength Parametar 3 0.14 0.87

Self Potential Energy Spread AE/E, 0.08% 1.7%

Output Radiation Parameters
p 0 ete |

Radiation Wavelength A 0.75 um 338 um
‘Linear e-folding length® L, =~Im{k)™! 38 cm 53 cm
Efficiency* n 0.52% 9.2%
Saturated A-Field* A 33 volts 7.4 x 10° volts
Radiation Power* P, 0.69 GW 1.2GW

*For maximum growth rate.
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FEL CONFIGURATION

EM. AND E.S. HELDS, Alz,). $i2,0

e W e

INTERACTION REGION |

f—

Fﬁ. 1 - Sé:hemmc of the frec-vlection laser model. The unmodulated
eloctron beam enters the interaction region from the left. The pump
field builds up adiabatically and reaches a constant amplitude for : > 0.

Fig. 2 — A diagram to illusirate the symmetry property of the
function G(rg, 2, 1) in the (1, 1) plane.
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w = 2,526  10'5 gac™!

Alz)

LINEAR REGIME _

|
o
)
o

WAVE VECTOR POTENTIAL, A(z) (VOLTS)

SPATIAL GROWTH RATE, I {cm ™)

0 0
-
] 1 1 -0.26
1.5 3.0 45 6.0
AXIAL DISTANCE (METERS)
Fig. 3 — Wave vector potential A4 (z) and spatial lincar growth rate I' as a function of

axizl distance for example 1 in the optical regime. The frequency is chosen to give
the maximum linesr spatial growth rate.
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248 2.50 2.52 2.54 2.56 2.58 2.60

w (10" sec V)

A comparison of the growth rate in the linear regime of the non-linear simulation
(x)) with the growth rate from linear theory (solid curve), and a comparison of
from non-linear theory (circles (O)) with that from linear theory using trapping

arguments (dashed cutve) as a function of frequency for example 1.

34

%




"".:‘ v“‘“[‘“\‘“lm e

NRL MEMORANDUM REPORT 4034

_ 50
. w = 2525 x 10'8 gac!
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o
s
25~ "
g k. (2)- —c‘\
> ] [ —
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2
g ™ .-
yd ey
; 0.0 7
z
g —25h
>
1 1
1.5 30 4.5
AXIAL DISTANCE (METERS)

Fig. 5§ = The variation in wavenumber of the scatteted radiation k,(z) and the
variation in wavenumber of the space charge potential k(z) as a function of
axixl distance for exampie | at the frequency corresponding to maximum linear

spatial growth.
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PONDEROMOTIVE POTENTIAL
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15 T30 a5
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6.0

#(2) (1075 VOLTS)

SPACE CHARGE POTENTIAL

Fig. 6 — A comparison of the magnitude of the ponderomotive potential |¢,,..(x)l and
the space charge potential {¢(z)| as a function of axial distance for example 1 at the fre-

quency corresponding to maximum lincar spatial growth.
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Fig. 7 — Phase space plots of velocily versus the relative time the particles in one beamlet cross the following
axial positions (a) z = 0.0 m and z = 2.0 m, (b) 7= 4.0m, (c) z = 4.3 m and (d) z = 45 m for example 1
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Fig. 7 (Continued) — Phase space plots of velocity versus the relative time the particles in one beamlet cross

the following axial positions (a) z =00 mand z =20m, (b) z~40m, (c) z =43 mand (d) z = 45m for
example 1
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Fig. 7 (Continued) — Phase space plots of velocity versus the relative time the particies in one beamlet cross
the following axial position: (&) » = 00m and z = 2.01n, (b) 2=40m, () z =43 m and (d) z = 45 m for
example 1
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Fig. 8 — A comparison of the magnitude of the ponderomotive potential |¢,o.0(z)| and
the space charge potential |#(z)| as a function of axial distance for example 2 at the fre-
quency corresponding to maximum linear spatial growth.,
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Fig. 12 — Phase space plots of velocity versus the relative time the particles in one beamlet cross the following
axial positions (a) z =0.0mand z = 0.35m, (b) z=0.7mand {) z = 0.77 m for example 2
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Fig. 12 (Continued) — Phase space plots of velocity versus. the relative time the particles in one beamlet cross the .
following axial positions (a) 2 =00mand z =0.35m, (b) z =07 mand (¢) z = 0.77 m for example 2
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Fig. 13 = A comparison of the maximum growth rate in the linear regime of the non-
linear simulation (crosses (x)) with the maximum growth rate from linear theory (solid
curve), and a comparison of efficiency from non-linear theory (circles (O)) with that
from linear theory using iue trapping arguments (dashed curve) as a function of the mag- ’ i
netic pump field amplitude for a fixed output frequency. i
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